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A diffusion equation is derived for the energy distribution of a gas of noninteracting point particles
following chaotic trajectories inside a slowly-time-dependent container. We discuss the relevance of
this problem to results concerning ergodic adiabatic Hamiltonian systems, as well as to one-body

dissipation in nuclear dynamics.
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INTRODUCTION

This paper considers the problem of a chaotic adiabatic
billiard gas, a gas of noninteracting point particles bounc-
ing around chaotically inside a container whose shape
changes slowly with time. (See Fig. 1.) Unlike an or-
dinary gas, where particle-particle collisions dominate,
producing a Maxwell-Boltzmann distribution of energies,
here the evolution of a particle’s energy is determined
solely by its collisions with the slowly moving walls of
the container. Let n(FE,t) dE denote the number of par-
ticles with energy in a small interval dE around E, at
time t. The main result of this paper is a diffusion equa-
tion governing the time evolution of 7, the distribution
of particle energies. We obtain such an equation for both
the two- and three-dimensional versions of this problem.

Section I of this paper specifies the problem precisely,
and introduces notation. In Sec. II we argue that the
distribution of particle energies of a chaotic adiabatic
billiard gas evolves diffusively; this suggests a Fokker-
Planck equation for the evolution of n(E,t). In Sec. III
we derive explicit expressions for the drift and diffu-
sion coefficients which determine this equation. These
are given in terms of the dynamics of particles bouncing
around inside time-independent containers, obtained by
“freezing” the slowly-changing shape of the container at
different instants in time. We show in Sec. IV that, un-
der a certain approximation, our results may be further
simplified so that the evolution of 7 is given entirely in
terms of the changing shape of the container, without
any reference to particle dynamics.

Our interest in this problem is twofold. First, as dis-
cussed in Sec. V, our gas can be treated as an ergodic
adiabatic ensemble, an ensemble of noninteracting sys-
tems evolving chaotically under a common, slowly time-
varying Hamiltonian. Ott, Brown, and Grebogi [1-3]
have used multiple time-scale analysis to study such sys-
tems. Their focus has been the goodness of the ergodic
adiabatic invariant, i.e., the extent to which a certain
quantity, shown by Ott [1] to be conserved in the limit of
an infinitely slowly evolving Hamiltonian, remains con-
served when the Hamiltonian evolves at a slow but finite
rate. Recently [4], we have used an alternative approach
to this problem to derive an evolution equation for the
distribution of energies of an ergodic adiabatic ensemble.
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(See also Ref. [5], in which an apparent discrepancy be-
tween the multiple time-scale approach of Refs. [1-3] and
the diffusion-equation approach of Ref. [4] is resolved.)
Such an equation was previously derived by Wilkinson
[6]; regrettably, we were unaware of his work, and failed
to give due credit. The present paper represents an ap-
plication of the general approach of Ref. [4] to a specific
class of ergodic adiabatic ensembles.

Our other motivation for studying this problem comes
from the independent-particle model of nuclear dynam-
ics, in which a nucleus undergoing some dynamical pro-
cess (e.g., fission or collision with another nucleus) is
imagined as a time-dependent container filled with a gas
of independent point particles. This simple model pro-
vides a mechanism, one-body dissipation for friction in
dynamical nuclear processes. A principal result of this
approach to nuclear dynamics has been the wall formula
[7,8], an expression for the rate at which one-body dis-
sipation transfers energy from the collective degrees of
freedom of the idealized nucleus to the individual nucle-
ons. The results of the present paper, as discussed in
Sec. VI, extend our understanding of one-body dissipa-
tion.

I. PRELIMINARIES

We take the time-dependent shape of the container
to be an externally imposed, rather than a dynamical,
quantity: the shape evolves in a predetermined way, in-
dependently of the gas of particles. Each bounce of a
particle off the moving walls of the container is taken to
be specular (the angle of reflection is equal to the angle
of incidence) in the instantaneous rest frame of the local
piece of wall at which the collision occurs. Effectively,
these bounces constitute elastic collisions in which the
inertia of the wall is infinitely greater than that of the
particle.

We are interested in observing our gas of noninteract-
ing particles as the shape of the container changes slowly.
To express “slow” shape evolution mathematically, we
make the shape a function of et, where ¢ is time and
€ is a slowness parameter, formally taken to be small.
Thus, let G(et) denote the shape of the container at time
t. We will be interested in observing our gas for times
of order e~ !, over which the container changes by order
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unity. As the extreme limit of slow evolution, we will
take the adiabatic limit to mean that in which we let €
go to zero, holding et; and ety fixed, ¢; and ty being the
initial and final times over which we observe the system.
In this limit, the container evolves infinitely slowly from
the initial shape G(et;) to the final shape G(ety).

We will frequently refer to the motion of particles in-
side a frozen container, by which we mean the time-
independent container obtained by arresting (“freezing”)
the slowly evolving shape G(et) at some instant in time.
Whenever discussing the dynamics of particles inside a
frozen container, as opposed to the slowly changing one,
we will emphasize the distinction by using &,, with
a = €t, to denote the shape of the container frozen at
et. When discussing motion inside the time-dependent
container, we will retain the notation G(et). The slow
evolution of the container from G(et;) to G(ets) defines
a continuous sequence of frozen shapes G, with a rang-
ing from et; to ety.

The motion of a particle bouncing around inside a
frozen container is represented in phase space by a tra-
jectory (q(t),p(t)) whose evolution is restricted to an
energy shell, a surface of constant energy. We make the
crucial assumption that, for any of the frozen shapes G,
an arbitrary nonperiodic trajectory will chaotically and
ergodically explore the entire energy shell on which it
is found [9]. A consequence of this assumption is that
the motion of particles in any of the frozen containers
exhibits chaotic mizing over the energy shell: any dis-
tribution of initial particle positions and velocities will
evolve into a uniform distribution of particles through-
out the container, with an isotropic distribution of ve-
locities. The time scale over which this mixing occurs
is given by the Lyapunov time ¢;, = 1/X, where A is the
Lyapunov exponent associated with the chaotic evolution
of the trajectories.

We now discuss the relevance of chaotic mixing to a gas
of particles in a slowly time-dependent container. First,
consider the motion of two particles sharing identical ini-
tial conditions at time to, one subsequently evolving in-
side the time-dependent container G(et), the other in-
side the frozen container G, with o = etg. Let T be
the length of time over which the paths followed by these
two particles remain very close; after this time, they will
diverge rapidly. T can be made arbitrarily large by choos-
ing € arbitrarily small, although, due to the assumed
chaoticity, a value of T' much larger than the Lyapunov
time t;, would require an extremely small e. [By treat-
ing motion inside the evolving container as a perturbed
version of motion inside the frozen one, with the pertur-
bations, proportional to €, introduced at collisions with
the wall, T can be shown to scale like ¢1, In(1/€), for small
€.] We will henceforth assume € to be small enough that

(1.1)

Thus, motion inside the time-dependent container closely
mimics that inside the frozen one over times on the or-
der of the Lyapunov time. In this case, chaotic mixing
occurs before the particles are affected by the time de-
pendence of the shape; as the container slowly evolves,
the continual process of chaotic mixing tends to main-

T2 tr.

tain a uniform distribution of particles throughout the
container, and an isotropic distribution of velocities.

One more assumption needs to be made in order for
the central result of this paper to be valid. Since this as-
sumption involves a correlation sum to be defined below,
we postpone its explicit statement to Sec. III, where it is
italicized.

We will use the term chaotic adiabatic billiard gas to
describe a gas of noninteracting particles inside a con-
tainer whose slowly evolving shape satisfies the assump-
tions discussed above. Our goal is an evolution equation
for the distribution of particle energies, n(E,t).

II. DIFFUSION OF ENERGIES

The energy of a given particle changes in small, dis-
crete amounts as the particle collides with the slowly
moving walls of the container. We can think of this pro-
cess in terms of the particle performing a “walk” along
the energy axis, with steps determined by the underlying
motion of the particle bouncing off the container’s walls.
Since this underlying motion is chaotic, correlations be-
tween these steps along the energy axis will exist only
over a finite time, on the order of the Lyapunov time £j,.
This consideration suggests [4,10] that the distribution
of energies of a gas of such particles will, on a time scale
much longer than ¢, evolve by a process of diffusion. We
therefore postulate the following Fokker-Planck equation
for the time-dependent distribution of energies, n(E,t):

on 0 1 62

5 = "5 t 5 g5z (927 (2.1)
This is a generalized diffusion equation, in which the
drift and diffusion coefficients g; and g are functions
of both energy and time. Specifically, we write g1 (E, €t)
and g2(F, €t); we use explicit functions of et rather than
simply ¢t because we expect the evolution of 7 at a given
time ¢ to be determined by the instantaneous shape of
the container and the way in which it is changing, which
depend explicitly on et.

Since we are interested in slow evolution of the shape
of the container, we can expand g; and g, in powers of
€ (making the assumption that integral powers suffice).
As discussed below, retaining only O(e') terms gives an
evolution equation for 7 that corresponds to the adiabatic
limit (infinitely slow shape evolution). We are interested
in slow but finite evolution of the shape of the container,
and therefore want expressions for g; and g, valid to
O(€?).

In treating the evolution of 7 as a process of diffusion,
we must keep in mind that this picture is valid only over
times much longer than the Lyapunov time tz. Thus,
for Eq. (2.1) to be applicable to our problem, there must
exist a time scale which is long compared to tr,, but short
compared to that over which significant changes in the
distribution of energies (as well as the shape of the con-
tainer) occur. We will use the notation At to indicate a
time on this scale, and will refer to this time as “short”
or “long” depending on the context, i.e., whether we are
discussing the evolution of n(E,t), or the motion of par-
ticles in the container.
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III. DERIVATION OF DRIFT AND DIFFUSION
COEFFICIENTS

To derive expressions for g; and g2, note that a dis-
tribution of energies described initially by a § function
along the energy axis,
will evolve under Eq. (2.1) so that, a short time At later,
the average energy will have drifted away from Fy by an
amount g;At, and the distribution will have acquired a
variance g.At, with g; and g, evaluated at Ey, eto. The
second moment of this new distribution of energies with
respect to Ey is then

Il

Ma(At) /dE n(E, to + At) (E — Eo)?

= (g1At)% + g2At. (3.2)
By considering a gas of particles sharing a common en-
ergy Eq at time tg [such a gas, with the number of parti-
cles normalized to unity, is described by Eq. (3.1)], then
by solving, in terms of quantities characterizing the sub-
sequent motion of these particles, for M3(At), and finally
by comparing the result with Eq. (3.2), we will obtain ex-
pressions for g; and g;. We will solve only for the leading
term of My (At), which is O(e?). From this will imme-
diately follow the leading terms of g; and g,, which are
O(€') and O(e€?), respectively. To obtain the O(€?) term
of g1, we will invoke a trick using Liouville’s theorem.
We therefore begin by considering, at time to, a gas
of particles of energy Ej distributed uniformly with the
container, with an isotropic distribution of velocities. Let
us introduce the wall velocity field, n, a scalar field de-
fined over the surface of the container: the value of n at a
particular point on the surface gives the normal outward
velocity of the moving wall at that point (see Fig. 1; a
negative n indicates a portion of the wall which is moving
into the gas). This field contains all information about
how the shape of the container is changing at a given

n

FIG. 1. Two-dimensional version of a chaotic adiabatic bil-
liard gas. The scalar field n gives the rate at which the wall
is moving normally outward, as a function of position s along
the wall. It is assumed that “freezing” the shape at any in-
stant will produce a time-independent billiard in which all
particle trajectories are chaotic.
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instant in time. Since this field changes with time along
with the shape of the container, we will write it as n(et)
(suppressing the dependence on the position on the sur-
face of the wall). We also introduce a frozen field n, —
defined over the surface of the frozen shape &, — which
is simply the normal outward wall velocity at the mo-
ment of freezing; n, gives information on how the shape
G(et) was changing at the instant in which it was frozen
into G,.

To lowest order in the wall velocity (proportional to €),
the change in the energy of a particle as it bounces off the
wall is —2muwvn sin 0, where m is the particle mass, v is its
speed prior to collision, 7 is the value of the wall velocity
field at the point of collision, and 6 is the angle between
the incoming trajectory of the particle and a surface tan-
gent to the wall. (See Figs. 2 and 3.) Between times tg
and to + At the particle bounces many times off the walls
of the container, whose shape changes negligibly during
that time. The number of collisions, B, is approximated
as

B = At/ (3.3)
where 7 is the average time between bounces for a particle
inside the container frozen at a = eto. The total change
in the energy of the particle over this time is, to leading
order,

B
E — Eo = —2mv Z flb sing,
b=1

(3.4)

where the n3’s are the normal outward wall velocities
sampled by the sequence of bounces b =1,2,..., B, and
the 0p’s are the corresponding angles of collision. We are
justified in pulling v = (2Eo/m)!/? outside this sum by
the fact that, to lowest order in ¢, the speed of the par-
ticle remains constant over time At. To obtain M;(At),
we square the above sum, then average over all particles,
i.e., over an ensemble of trajectories evolving from a uni-
form distribution of initial conditions on the energy shell
Ej at time to. Angular brackets will denote this average:

B B
Mg(At) = 4?’!‘1,21)2 Z Z <’flb sian ’flbl sin()b: > (35)

b=1 b'=1

Now, suppose temporarily that, for any initial condi-
tion corresponding to energy Ey at time to, two trajec-

wall

particle

FIG. 2. Particle bouncing off a small segment of wall in a
two-dimensional billiard. The value of 6 ranges from 0 to =.
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particle

FIG. 3. Particle bouncing off a small patch of wall in a
three-dimensional billiard. The dashed line represents the
normal projection of the trajectory onto the wall. The value
of @ ranges from 0 to w/2; ¢ ranges from 0 to 2mw. The line
representing ¢ = 0 is arbitrary.

tories evolving from that initial condition, one inside the
slowly changing container, the other inside the container
frozen at a = €tg, remain very close to one another for the
entire length of time from ¢q to £, + At. (Since At > tr,
this puts a drastic limit, which we later relax, on the
magnitude of €.) If this condition holds, then, for pu-
poses of evaluating the right-hand side of Eq. (3.5), we
may replace the gas of particles evolving for time At in-
side the time-dependent container, with a gas evolving
inside the frozen one. With this replacement, Eq. (3.5)
becomes

B B
2 2 . . . .
v E E <nab sin 0y Mgy sin Gy > R
b=1 b'=1 @

(3.6)

Mz (At) =

where the angular brackets (), indicate an average over
an ensemble of trajectories evolving inside the frozen
G., with a = €tq (as before, the ensemble is defined by a
uniform distribution over the energy shell Ey), and nas
gives the value of the frozen field n, at the bth bounce
of one such trajectory.

We rewrite the quantity being summed in Eq. (3.6) as

((rab 51005 = &) (ot 5100y = E0))  + Eokir

= e + &y, (3.7)

where &, = (Niqp sin bp) 4 is the value of n, sin 6 at the bth
bounce, averaged over the ensemble of trajectories in the
frozen container. Since the distribution of this ensemble
is invariant with time (by virtue of uniform distribution
over the energy shell Ey), & is in fact independent of b.
We will therefore write it simply as £. Similarly, cpu,
which measures correlations in 7, sinf between the bth
and b'th bounces, depends on b and b’ only through the
difference Ab = b’ — b, and so will be written as cap. The
double sum in Eq. (3.6) then becomes

B B B |Ab|
ZZ(CAb+§ = B** +B Z ( —“'B‘)C
b=1 b'=1 Ab——B

(3.8)
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By chaotic mixing, cap = 0 for |Ab| > v, where
vy &ty /7. Having assumed At > ty, we have B > vy,
and may therefore approximate the sum appearing on the
right hand side of the above expression as Z“_L: cap; this
is the discrete version of a standard result from the the-
ory of stationary stochastic processes [see Ref. [11] and
Egs. (4.11) and (4.12) of Ref. [4]]. We assume that this
sum converges (see Sec. VII for examples in which this
assumption fails). We now have, to O(€?),

oo
Mz(At) = 4m?v? (3262 + B Z CAb)
Ab=—o0c0
2 4m2v2 +oo
= (2mv fAt) + mo At Z CAb-
Ab=—o0
(3.9)
Comparison with Eq. (3.2) yields, to O(€?),
2mv
g1 = £+ O(e?), (3.10)
im v2
g2 = ; (8.11)
T
where
~+oo
D = Z CAb- (3.12)
Ab=—o0

We now relax the assumption made immediately af-
ter Eq. (3.5), and assert that as long as motion inside
the frozen container closely mimics that inside the time-
dependent one over times on the order of ¢y, rather than
the much longer At, the steps leading to Eqgs. (3.10) and
(3.11) will remain valid. (We have already assumed, in
Sec. I, that this more relaxed condition holds.) The jus-
tification for this assertion is similar to that presented in
Ref. [4] [see the paragraph following Eq. (4.14) therein];
its essence is as follows. Due to chaotic mixing, apprecia-
ble correlations exist only between bounces separated by
times on the order of, or shorter than, the Lyapunov time
tr,. However, if motion inside the frozen container closely
resembles that inside the time-dependent one over times
up to tr, then the correlations that do exist are nearly
identical for the two cases. Since it is these correlations
that determine the diffusion of particle energies, we are
justified in evaluating the right hand side of Eq. (3.5)
using particles inside the frozen rather than the time-
dependent container.

We henceforth drop the subscript 0 from Ey and %o.

In Appendixes A and B, we evaluate { and 7 for both
two- and three-dimensional containers. The results re-
duce Eq. (3.10) to

g1(E,et) =

—B(et) E + O(e?), (3.13)

where the factor 3(et) depends on the dimensionality:

8 = A/A (2D container),
" 1 2V/3V (3D container),

(3.14a)
(3.14b)
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where A and V denote the area or volume enclosed by
the container, and the dot signifies differentiation with
respect to time. (A4, A, V, and V are evaluated at et.)
The ambiguity in sign appearing in Eq. (3.10) has been
removed by physical considerations: since there is a net
positive amount of work done by a gas inside a container
whose area (in the 2D case) or volume (3D) is increasing,
the energy drift g, associated with A > 0 or V > 0 must
be negative.

In Eq. (3.11), the quantity D is determined by the
frozen shape G, and the associated frozen wall velocity
field n,, and hence may be written as a function of the
value of «, in this case et; thus, D = D(et). All depen-
dence of g on E is in the factor 4m?v?/7. Using the
results for 7 from Appendix B, we get, to O(e?),

g2(E, et) = ~v(et) E3/?, (3.15)

with
_ {(SI/WA) (2m)*/2 D (2D), (3.16a)
T (28/V) (2m)2 D (3D), (3.16Db)

where [(et) is the perimeter of the 2D container, and S(et)
is the surface area of the 3D one.

It remains to obtain the O(€?) term of g;. The strategy
for doing so invokes Liouville’s theorem, and is detailed
in Sec. IV of Ref. [4]. There we find

g1 = gn + 92%), (3.17)

2% 8E(

where g;; is the O(e!) term of g; [given above by
Eq. (3.13)], and

0
where Q(F, et) represents the volume of phase space en-
closed by the energy shell E at time ¢. For a two-
dimensional billiard system, this volume is the product
of the area of ordinary space enclosed by the container,
with the area in momentum space of a circle of radius

p = (2mE)Y/2. Thus,
Q = 2mmAE, ¥ =

2rmA. (3.19)

In three dimensions, we get

Q= §W(2m)3/2VE3/2, T = 27(2m)¥2VEY2. (3.20)

Using Eq. (3.17) we rewrite Eq. (2.1) as

on 7] 1 8 4 /n
3 = —apm + 355 2555 (3)]:
Combining our results for g11, g2, and ¥ with Eq. (3.21),
we finally write the evolution equation for 7, to O(€?), as

(3.21)

on _ £ 72 (g fn)

( n) + £y 9B

(2D) (3.22a)

or
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5 = BapEn + 3 55 o (B )] D)

(3.22b)

Equation (3.22) represents the central result of this pa-
per. The coefficients 3 and v are given [Egs. (3.14) and
(3.16)] in terms of the particle mass m, quantities associ-
ated with the changing shape of the container (A4, A, and
l;orV,V,and S), and the function D = Zt: cap. Only
the last of these directly involves the dynamics of parti-
cles bouncing around inside a container, and is given in
terms of motion inside the frozen container &, a = et.
Thus, the time-dependent problem [a gas of particles in-
side the slowly changing container G(et)] is solved in
terms of the solutions of a continuous sequence of time-
independent problems (motion inside the frozen shapes
G4)- In the following section we show how, in a certain
approximation, the quantity D may be divested of any
reference whatsoever to the dynamics of bouncing par-
ticles. In this case the evolution of 7 is given directly
in terms of the changing shape of the container. First,
however, we discuss the adiabatic limit.

The adiabatic limit, as defined in Sec. I, involves a
time ty — t; which approaches infinity like e 1. Over
such a time, the term involving 8 (~ ¢€) in Eq. (3.22) will
make an O(e?), i.e., finite, contribution to the change in
7, while the term involving v (~ €%) will make an O(e'),
i.e., vanishing, contribution. Thus, in the adiabatic limit,

on a

o _ 50 (),

o~ PoE (B
for both the 2D and the 3D case. This equation describes
a distribution of particles moving along the energy axis
under a “velocity” field —BFE. The energy £(t) of any
one of these particles satisfies

(3.23)

~(A/A)E(t) (2D),
—(2V/3V)E(t) (3D).

Gt = -0 - { (8.242)

(3.24b)

From this, we get (d/dt) Q(E(t),et) = 0 [see Egs. (3.19)
and (3.20)]. Equation (3.22) is therefore consistent with
the adiabatic invariance of §2, which was demonstrated
by Ott [1] to hold generally for ergodic adiabatic Hamil-
tonian systems.

IV. THE QUASILINEAR APPROXIMATION

It may sometimes be the case that the sum D =
Zf: cap Which appears in 7 is dominated by the term
Cp:

D = Co. (41)
We denote this the quasilinear approzimation, following
standard usage [12]. The validity of this approxima-
tion, which implies that correlations between the differ-
ent bounces of a trajectory play a negligible role in the
evolution of n, will depend on the details of the shape
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G, and the frozen wall velocity field ng, and may be dif-
ficult to assess a priori. Roughly speaking, it demands
that the container’s shape and its motion be sufficiently
irregular. We do not pursue here the question of how to
define “sufficiently irregular.” Rather, for those systems
for which Eq. (4.1) happens to be valid, we derive an
evolution equation for n wholly in terms of the evolution
of the shape G(et), without explicit mention of particle
dynamics.

Take Eq. (4.1) to be valid. In Appendix A we solve for
cg, obtaining

co = 2 $ds [n — %52] = —Ig(Et) (2D),

I

co 55 §do [h2 - g'fzz] = — I3(6t) (3D). (4.2)
Here, § ds and § do indicate integrals over the entire wall
of the container, and n is the average value of n = n(et)
over the wall. Combining these results with Egs. (3.14),

(3.16), and (3.22), we have the simplified results

on A 3 8v2m 1o} 32 On
5 = 4o EN * 5ea B og (P 55) (D)
(4.3a)
and
(977 2V 8
ot ~3v 9B\ L™
V2 9 2 0 —1/2
+ X Uy A ﬁ[ﬁ; o5 (E n)} (3D). (4.3b)

V. RELATION TO PREVIOUS RESULTS

In Ref. [4] we considered the general problem of sys-
tems evolving in phase space under an ergodic adiabatic
Hamiltonian, a slowly time-varying Hamiltonian which,
if frozen at any instant, gives rise to trajectories that er-
godically and chaotically explore their energy shells. This
problem has been studied by Ott and co-workers [1-3],
using multiple-time-scale analysis; by Koonin and Ran-
drup [13], using linear response theory; and by Wilkin-
son [6], expanding on Ott’s results. Let z = (q,p) rep-
resent a point in phase space, let H(z,et) denote the
slowly-changing Hamiltonian, and let H,(z), with a = et,
denote the time-independent Hamiltonian obtained by
freezing H(z,e€t) at time t. A central result of Ref. [4] is
an evolution equation (previously derived by Wilkinson)
for n(E,t), the distribution of energies of an ensemble of
such systems, all governed by the same ergodic adiabatic
Hamiltonian, differing from one another only by their ini-
tial conditions in phase space; we call such an ensemble
an ergodic adiabatic ensemble. This equation is identical
to Eq. (2.1) of the present paper, only with

g1(E,et) = @ + 212 88E (Egz) (5.1)
“+oo
a(Be) = [ dsc), (5.2)
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where X(E, et) is defined as per Eq. (3.18), and the quan-
tities @ and C(s), both functions of E and et, are dis-
cussed below. (To avoid notational conflict with Sec. VI
of the present paper, we use % to denote the quantity
which in Ref. [4] is denoted by 7.)

In this section we show that one can consistently treat
a chaotic adiabatic billiard gas as an example of an er-
godic adiabatic ensemble, by treating the container as the
limiting case of a smooth potential well. Thus, Egs. (5.1)
and (5.2) will be shown to reduce, in this limit, to the cor-
responding expressions derived in Sec. III for the billiard
gas.

The quantities & and C(s) are defined as follows. Let
H (z,€t) be the slowly time-dependent function obtained
by differentiating H (2, €t) with respect to t; define H,(z),
with a = et, as the time-independent function obtained
by “freezing” H(z,et) at time ¢. Then

@ = {I:I,,(z)},
{ [Ha(z) - u] Oal(s) [H,,(z) - a] }

where the curly brackets indicate an average over all
points z on the energy shell E of H,, and O,(s) is a
time evolution operator which acts to the right, evolving
a point z for a time s under the frozen Hamiltonian H,.

For a particle moving inside a hard-walled container,
it is intuitive to think of the container as a potential
well V(q) whose value is zero for q inside the container
and infinite outside. This formulation, however, does not
immediately lend itself to the calculation of @ and C|(s)
as defined above. We therefore soften the walls of the
container by letting the potential rise smoothly from 0
inside to infinity outside, over a wall skin of thickness §;
we let § be arbitrarily small.

The contours of V(q) in the vicinity of some point on
the surface of the wall will have the appearance shown
in Fig. 4. If the wall at this point is moving with normal
outward velocity n, then, at a point q within the wall

(5.3)

C(s)

Il

(5.4)

soft wall
ta
)
-
\
)
t1
. V=0 V=
particle

FIG. 4. The trajectory of a particle bouncing off a wall of
finite skin depth. The parallel lines represent the contours of
the potential V(q) in the vicinity of the bounce.
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skin, we have

H = —hah-VV(q) = -2 |VV(q)|, (5.5)
where i is the unit vector pointing normally outward
from the wall. The frozen value of H is then

Hy, = —noh-VV(q). (5.6)
By the assumed ergodicity of motion inside the hard-
walled container (and by extension in the soft-walled con-
tainer, for arbitrarily small §), the phase-space average
of H, over a particular energy shell is equal to the time
average of H,(z(t)), where z(t) is any nonperiodic tra-
jectory of energy E:

= {1} = Jim —/OTdtHa(z(t)).

Contributions to this integral occur only along the short
segments of z(t) that constitute collisions with the wall.
The contribution from one such bounce, occurring be-
tween times ¢; and ¢, as shown in Fig. 4, is, by Eq. (5.6),

(5.7)

tz

dt Fo(2(t)) = —haﬁ-/2dtVV(q(t)). (5.8)

ty t1

Since —VV is the force acting on the particle, its integral
gives the total change in momentum:

/t2 dt Ha(a(2)) = 7~ [(82) — p(t1)]

t1
= —2mung,sin . (5.9)
Thus, Eq. (5.7) becomes
N
2mu 1
U = — - 1\}21100 N ;nabsm@b, (5.10)

4m2v2

T

4m?v?

= D
T

where the steps taken are similar to those of Sec. III.
By treating the hard-walled container as a limiting case
of a potential well [14], we have shown that, in this limit,

i — —fFE, (5.18)

+o0
/ dsC(s) — vyE3/2. (5.19)

—0oo
When these expressions are plugged into Eqgs. (5.1) and
(5.2), they give an evolution equation for n(E, t) identical
to that obtained in Sec. III. This shows that a chaotic
adiabatic billiard gas can be consistently treated as an

/+°° dsC(s) = 121(1)0 711 <[—2mv

= yE*2,
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the sum being over the bounces occurring between t = 0
and t = T'. The quantity imy_, o0 (1/N) Zivzl Tooeb SIN O
is the average value of n,siné sampled by a particle
bouncing forever off the walls of the frozen container,
which, by ergodicity, is equal to the previously defined €.
Thus,

i = _2mv€: _BE.

T

(5.11)

To solve for fj:: ds C(s), note that C(s) may be writ-
ten as

<[Ha(z(t)) —a} [Ha(z(t+ 5)) — u]> ,

(e

(5.12)

where z(t) is a trajectory evolving under H,, and the
angular brackets denote an average over a uniform dis-
tribution of such trajectories over the energy shell E.
[Since such a distribution is unchanged by evolution in
time, the above expression for C(s) is independent of ¢.]
With some manipulation, this allows us to write

/_:o dsC(s) = Jim <(/0T dt [ (a(1)) a)").
(5.13)
Using Egs. (5.9) and (5.11), we have
T N
/ dt [Ha(a(t) — ] = ~2mv 3 (iapsings — £),
0 b=1
(5.14)

where as before the sum is over the bounces of z(t) oc-
curring between ¢t = 0 and ¢t = T'. Thus,

(Trap sin by — E)] 2>,

EN: (5.16)

=1b'=1

(5.15)

Mz@Mz

o

(5.17)

f

example of an ergodic adiabatic ensemble, and so a nu-
merical test of the results presented in the present paper
would also stand as a test of the results of Ref. [4].

VI. ONE-BODY DISSIPATION IN NUCLEAR
DYNAMICS

As discussed in Refs. [7,8], it may be instructive to
treat a nucleus undergoing some dynamical process (such
as fission or heavy-ion collision) as a container, whose
shape (but not volume) is allowed to change with time,
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filled with a gas of noninteracting point particles. The
container is an idealization of the mean field created by
the nucleons; the particles represent the individual nu-
cleons moving within this mean field. (Residual nucleon-
nucleon interactions are suppressed by Pauli blocking,
and are disregarded in this simple approximation.) The
solution of this dynamical problem at the classical level is
closely related to the problem considered in the present
paper.

In applications of this model, one is typically interested
in following the shape of the nucleus through some dy-
namical process. This involves choosing a few reasonable
variables to describe the changing shape, then deriving
Euler-Lagrange-Rayleigh equations for the evolution of
these variables [7,15]. As pointed out in Ref. [7], the par-
ticles behave as a source of friction: as they interact with
the changing shape of the container (bouncing elastically
off its moving walls), there occurs a net flow of energy
from the degrees of freedom of the shape, to the degrees
of freedom of the gas of particles. This mechanism is
known as one-body dissipation, and is an example (to our
knowledge, the first) of deterministic friction, in which
the energy of a few “slow” degrees of freedom is dissi-
pated by their coupling to “fast” deterministic chaotic
motion. To incorporate this friction into the equations
of motion for the shape of the container, one needs an ex-
pression for the rate of this flow of energy, as a function of
the way in which the shape is instantaneously changing.
In Ref. [7], the wall formula is derived for this rate:

d—iz = pv f do n?.
Here, Er is the total energy of the gas (the sum of the
kinetic energies of the individual particles), p is the total
mass density of particles inside the container, v is the
average speed of the particles, and § do n? is the surface
integral of the square of the normal wall velocity.

The wall formula is derived by treating each infinites-
imal area element on the surface of the container as a
tiny piston, moving either into or away from the gas of
particles. By calculating the work done on the gas by one
such piston, then summing over the entire surface (and
taking the volume of the container to stay constant), one
obtains Eq. (6.1). We will refer to this derivation as the
“piston approach” to one-body dissipation [16].

Two key assumptions that enter the derivation of the
wall formula are, first, that the motion of the walls
is slow compared to that of the particles, and second,
that the gas is always distributed uniformly within the
container, with an isotropic distribution of velocities.
These assumptions are satisfied by a chaotic adiabatic
billiard gas, and so the wall formula should be consis-
tent with the results derived in the present paper. To
show that this is the case, we first comment that the
piston approach disregards any correlations that may
exist between the bounces of a particle moving inside
the container. Thus, in comparing the wall formula
with our results, we use the quasilinear approximation
of Sec. IV. The total energy of the gas may be expressed
as Er(t) = [dE n(E,t) E, where 7 is the time-dependent
distribution of energies. Differentiating with respect to

(6.1)
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time, then applying Eq. (4.3b) (with V = 0), we have

B B [an fy ()] e

where Iz = fhz do. After twice integrating by parts,
this becomes

dEr  V2m 12
T Iy [ dE n B2, 6.3
dt v ? / " (6-3)
The average speed of the particles is given by

7 = Ai/ /dE n (2E/m)*2, (6.4)

where N = [ dE 7 is the total number of particles. This
enables us to rewrite Eq. (6.3) as

fl& = %5%7’12&7,

7 (6.5)

which is the wall formula.

Having demonstrated that the results of the present
paper (in the simplified form of Sec. IV) agree with the
wall formula, we now consider the factor 7 which appears
in the latter. Differentiating both sides of Eq. (6.4) with
respect to time, then applying Eq. (4.3b), then integrat-
ing by parts twice, we obtain

w3 [,
__:_*7{ do.
i _av P

Equations (6.5) and (6.6) constitute a closed set of equa-
tions, in the sense that, if we know how the shape of the
container evolves with time, then Eq. (6.6) may be inte-
grated to yield ¥(¢), which may then be inserted into the
wall formula, which in turn is integrated to give Er(t).
Without Eq. (6.6), some assumption must be made about
the evolution of ¥ in order for the wall formula to be inte-
grated over any finite length of time. The added under-
standing of one-body dissipation which one gains from
the second wall formula is discussed in greater detail in
Refs. [17,18].

We now consider a generalization of Egs. (6.5) and
(6.6). First, note that Eq. (6.5) may be rewritten as

%v—z = %ﬁfdahz,

where v2 is the average value of particle speed squared.
Let v™ denote the average value of the nth power of par-
ticle speed:

(6.6)

(6.7)

() = / dE n(E,t) (2B /m)"/>. (6.8)
Differentiating both sides with respect to time, applying
Eq. (4.3b), and integrating twice by parts yields

iv_" = n(n+2) 2) pn—1 j{dahz;

6.9
dt 4V (6-9)

Egs. (6.6) and (6.7) are specific examples of this general
formula.
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In Ref. [17], Eq. (6.9) is obtained using a generalization
of the piston approach described above. A consequence of
Eq. (6.9), as shown in Ref. [17], and supported by numer-
ical simulations [18], is that, asymptotically with time, a
chaotic adiabatic billiard gas will achieve a distribution
of particle velocities which has a universal form:

f(v) x exp(—v/e), (6.10)

where f(v)d3v gives the number of particles with veloc-
ity in a small region d3v around v, and the quantity ¢
is a velocity scale that grows with time. This exponen-
tial distribution of velocities stands in contrast to the
Maxwell-Boltzmann distribution that occurs when the
particles interact with one another.

We conclude this section by drawing attention to the
fact that, elsewhere in this paper, we have treated the
changing shape of the container as externally imposed,
whereas in the nuclear context it is a dynamical quantity.
This calls into question the validity of applying Eq. (4.3b)
to the problem considered here; might not the evolution
of 1 be affected significantly by allowing the walls to re-
coil? To answer briefly, we point out that the inertia
associated with the collective degrees of freedom of the
nucleus, while not infinite, is still much greater than that
of an individual nucleon. Therefore the effects of recoil
on the evolution of 77 should constitute a small correction,
and Eq. (4.3b) should remain valid to leading order. For
a more careful (and general) treatment, see Ref. [19].

VII. BRIEF DISCUSSION

We conclude with a brief discussion of several issues.

First, the assumption that all of the frozen shapes G,
exhibit global chaos (trajectories chaotically and ergod-
ically explore the energy shell) is admittedly restrictive.
Globally chaotic Hamiltonians on the one hand, and inte-
grable Hamiltonians on the other, represent two extremes
in the range of dynamical behavior; a generic Hamilto-
nian will give rise to a mixture of both regular and chaotic
trajectories. Therefore, in some sense, this paper is an
attempt to understand one of the two extremes. (For
an analysis of integrable adiabatic Hamiltonian systems,
see Ref. [20]. In mixed systems, the behavior of trajec-
tories near separatrices will be important; this has been
investigated in Ref. [21].)

It is possible to rigorously establish the property of
global chaos for certain two-dimensional billiard systems
[22]. Two of the best-known examples are the Sinai bil-
liard [23] and the Bunimovich stadium [24]. However,
in both of these cases there exists a continuous family
of periodic trajectories, which, as argued in Ref. [3] (see
also references therein, and Ref. [25]), implies that the
sum Zt‘: cap diverges. These systems therefore vio-
late the added assumption made in Sec. III of this pa-
per. (Such systems are said to display anomalous diffu-
ston; the problem of how to describe the evolution of
n when the frozen shapes exhibit anomalous diffusion
would make for an interesting extension of the theory
presented here.)

We now propose the “three-leaf clover,” Fig. 5, as a
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FIG. 5. The outline), a

(heavy
two-dimensional billiard system whose boundary consists of
the arcs of sic circles. The common radius of the outer circles
is R; that of the inner ones is r. By varying @ = R/r, one has
a continuous family of such shapes, all globally chaotic. For
«a > 1, all periodic orbits are isolated.

three-leaf clover

family of billiard systems satisfying the conditions of the
present paper. Varying the parameter « = R/r gives a
continuous family of shapes &,. By direct application
of Theorem 1 of Ref. [22], one can establish the property
of global chaos for any of these shapes. Furthermore,
it is fairly straightforward to prove that, for o > 1, all
periodic orbits inside &, are isolated, i.e., no continuous
families exist. Thus, by filling such a clover with a gas of
noninteracting particles, then allowing R and r to change
slowly with time, always maintaining o > 1, one has
an example of a two-dimensional system satisfying the
assumptions of this paper. (For another example, see
the modified Sinai billiard in Ref. [3].)

Of course, the theory presented in this paper needs
to be tested numerically. We are currently running sim-
ulations of particles inside a time-dependent three-leaf
clover, and plan to publish the results at a later date.
However, some numerical results supporting predictions
discussed in Sec. VI already exist in the literature.

First, the wall formula, which was shown to follow from
Eq. (4.3b), has been studied extensively for a variety
of three-dimensional hard-walled cavities [8]. In these
studies, the results of numerical simulations agree well
with the wall formula, provided that the dynamics in the
frozen billiard is sufficiently dominated by chaotic trajec-
tories.

Another result following from Eq. (4.3b) was the sec-
ond wall formula [Eq. (6.6)], giving the rate of change
of ¥, the average speed of the particles. Combining the
two wall formulas, we have obtained [17] a prediction for
the amount of energy dissipated after a time long enough
that o has changed significantly (i.e., beyond the valid-
ity of the original wall formula alone). This prediction
has been tested in Ref. [18] for the same set of shapes as
the wall formula, and again there is good agreement with
theory.

A final prediction made in Sec. VI was that, in the long-
time limit, a three-dimensional chaotic adiabatic billiard
gas will achieve an exponential distribution of particle
velocities. Once more, this prediction has been tested for
the same set of shapes [18], and once more the numerics
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support the theory.

This agreement between numerical simulation and
Eq. (4.3b) raises two questions. First, the billiard sys-
tems involved in the computer experiments do not sat-
isfy the assumption of global chaos: in each case, when
the shape is frozen, some small but finite fraction of
phase space is filled with nonchaotic trajectories. Per-
haps, then, the results of this paper, while strictly valid
only for the narrow class of systems satisfying the as-
sumptions of Sec. I, in reality work well for a much wider
range of billiards. It is reasonable to speculate that, if
phase space is dominated by chaos, with only small iso-
lated islands of regular motion, then the results of this
paper may still be applicable.

Second, Eq. (4.3b) follows from the quasilinear ap-
proximation, in which all correlations between different
bounces are ignored. However, we have no reason to be-
lieve a priori that this approximation holds for the set
of shapes tested, which are all simple deformations of
a spherical cavity. Is the validity of this approximation
more general than one might at first expect, and if so,
how can we understand this?

Both of these issues are currently under investigation.
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APPENDIX A -

In this appendix we evaluate the quantities £ and co,
both functions of et. These quantities are defined with
respect to a gas of noninteracting particles evolving in-
side the frozen shape G, with a = et. The particles are
assumed to share a common energy, and to be distributed
uniformly within the container, with an isotropic distri-
bution of velocities. While the definitions of £ and co
involve the dynamics of these particles, our final expres-
sions will be given solely in terms of quantities charac-
terizing the shape of the container and its instantaneous
wall velocity field. We use the following notation. N is
the number of particles in our gas (N > 1), and v is
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their common speed. A and [, both functions of et, refer
to the area and perimeter of the two-dimensional con-
tainer; f ds denotes a line integral over the entire wall.
Similarly, in three dimensions, V and S refer to the vol-
ume and surface area of the container, and f do denotes
a surface integral over the wall. Note that

A = dAjdt = jfdsh (2D),

V = dv/dt = j{dah (3D), (A1)

where 1 = n(et) is the wall velocity field describing the
evolution of G(et).

The quantity £ was defined in Sec. III as

€ = & = (nasiny ), (A2)

the average value of n,sinf over the bth bounce of all

particles in the gas. As mentioned, the invariance with

time of the distribution of these particles implies that &
is independent of b, and therefore we may alternatively

write it as
£ = <<h,,sma>>,

where the double angular brackets denote an average over
all bounces of all the particles of the gas. In this form, £
becomes easy to evaluate.

To evaluate £ in two dimensions, first consider a small
segment ds of the wall of the container. The rate r at
which this segment is being struck by particles making
an angle of collision between 6 and 6 + d@ is given by

(A3)

r = jdssin#,

(A4)

where j = (df/27)(Nv/A) is the current density of par-
ticles bombarding ds from this range of angles, and sin 6
is a flux factor. The quantity £ = ({4 sin6)) is then the
weighted average [ 7 (nqsinf)/ [ r, where the integral is
over the entire wall, and over 8 from 0 to w. This yields

A
4l -

The quantity co = cpp = {(Tapsin by — &)?) is, like &,
independent of b, and may be written as

co = <<(hasin9 - 5)2>>

¢ - (45)

= /T(ﬁa sinf — 5)2//T7 (AG)
which reduces to
2 .o 32
_ 2 _ A7
co 3l ds [n 33 " ], (AT)

where n = (1/l) §dsn = A/l is the average value of
7 = n(et) over the wall of the container. [Since the final
expression for ¢y no longer involves the dynamics of par-
ticles in the frozen container, our notation has reverted
from 7, to n(et).]
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In three dimensions, consider a small patch do on the
surface of the container. Let r be the rate at which this
patch is being struck by particles coming from a solid
angle d{2 around the direction (6, ¢), as defined by Fig. 3.
This rate is given by r = j do sin 6, where

_ AN cosdfdp N

7= dar V-~ 4 |4 (A8)

£ = ((nasind)) is again equal to [ r (n4sinf)/ [ r, only
now the integral is over the entire surface area of the wall,
0 from 0 to 7/2, and ¢ from 0 to 27. This yields

2V
{ = 35 (A9)
Similarly,
co = /r(hasine — 5)2//7'
_ 1 .2 8 ~2
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where 7 = (1/S) §don = V/S is again the average of
n(et) over the wall.

APPENDIX B

In this appendix we solve for 7, the average time be-
tween the bounces of a particle of speed v moving chaot-
ically inside a frozen container. Filling the container
with a large number A of such particles, the total rate
at which the walls of the container are being struck is
R = N/7. Alternatively, R = fr, in the notation of
Appendix A. Setting these two equal yields
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